991 research outputs found

    Specific heat of the ideal gas obeying the generalized exclusion statistics

    Full text link
    We calculate the specific heat of the ideal gas obeying the generalized exclusion statistics (GES) in the continuum model and the tight binding model numerically. In the continuum model of 3-d space, the specific heat increases with statistical parameter at low temperature whereas it decreases with statistical parameter at high temperature. We find that the critical temperature normalized by μf\mu_f (Fermi energy) is 0.290. The specific heat of 2-d space was known to be independent of gg in the continuum model, but it varies with gg drastically in the tight-binding model. From its unique behavior, identification of GES particles will be possible from the specific heat.Comment: 14 pages, 9 figures, to be published in Eur. Phys. J. B, References and figures added, typos corrected, one section removed and two sections merge

    Unitary expansion of the time evolution operator

    Full text link
    We propose an expansion of the unitary evolution operator, associated to a given Schr\"odinger equation, in terms of a finite product of explicit unitary operators. In this manner, this unitary expansion can be truncated at the desired level of approximation, as shown in the given examples.Comment: 6 pages, 7 figures. Updated version, minor final change

    Diffractive Meson Production and the Quark-Pomeron Coupling

    Get PDF
    Diffractive meson production at HERA offers interesting possibilities to investigate diffractive processes and thus to learn something about the properties of the pomeron. The most succesful phenomenological description of the pomeron so far assumes it to couple like a C=+1C = +1 isoscalar photon to single quarks. This coupling leads, however, to problems for exclusive diffractive reactions. We propose a new phenomenological pomeron vertex, which leads to very good fits to the known data, but avoids the problems of the old vertex.Comment: 20 pages, latex with uuencoded postscript, revised versio

    Vertical Convergence of Turbulent and Double-Diffusive Heat Flux Drives Warming and Erosion of Antarctic Winter Water in Summer

    Get PDF
    The seasonal warming of Antarctic Winter Water (WW) is a key process that occurs along the path of deep water transformation to intermediate waters. These intermediate waters then enter the upper branch of the circumpolar overturning circulation. Despite its importance, the driving mechanisms that mediate the warming of Antarctic WW remain unknown, and their quantitative evaluation is lacking. Using 38 days of glider measurements of microstructure shear, we characterize the rate of turbulent dissipation and its drivers over a summer season in the northern Weddell Sea. Observed dissipation rates in the surface layer are mainly forced by winds and explained by the stress scaling (r2 = 0.84). However, mixing to the base of the mixed layer during strong wind events is suppressed by vertical stratification from sea ice melt. Between the WW layer and the warm and saline circumpolar deep water, a subsurface layer of enhanced dissipation is maintained by double-diffusive convection (DDC). We develop a WW layer temperature budget and show that a warming trend (0.2°C over 28 days) is driven by a convergence of heat flux through mechanically driven mixing at the base of the mixed layer and DDC at the base of the WW layer. Notably, excluding the contribution from DDC results in an underestimation of WW warming by 23%, highlighting the importance of adequately representing DDC in ocean models. These results further suggest that an increase in storm intensity and frequency during summer could increase the rate of warming of WW with implications for rates of upper-ocean water mass transformation.publishedVersio

    QCD sum rules with finite masses

    Full text link
    The concept of QCD sum rules is extended to bound states composed of particles with finite mass such as scalar quarks or strange quarks. It turns out that mass corrections become important in this context. The number of relevant corrections is analyzed in a systematic discussion of the IR- and UV-divergencies, leading in general to a finite number of corrections. The results are demonstrated for a system of two massless quarks and two heavy scalar quarks.Comment: 15 pages, including two pictures to be found in an extra file. Latex neads epsf.st

    Functional and conservation value of fruits - a lab approach

    Full text link
    [EN] Fruits are a relevant source of phenols and ascorbate, biomolecules which scavenge reactive oxygen species. For this reason, they are considered as healthy for the human being. Fruits quality depends on their levels of antioxidants and enzyme activities that ensure their conservation. The aim of this work was to plan and execute a laboratory class of Enzymology, a discipline of Biochemistry degree of University of Évora, Portugal, for determining the functional and conservation value of three different fruits types, sold in the market of Évora, Portugal. The development of this activity allowed that students of a pilot class participate in a laboratory activity which intended to compare the content of phenols, ascorbate, and polyphenol oxidase enzyme activity present in apple, peach and blueberries pulp. At Lab activity, the students successfully determined markers of functional and conservation value of selected fruits. The skills acquired by the students, in terms of obtaining fruit pulp and their composition in antioxidants, stimulated their commitment degree on the application of biochemistry in the everyday, acquiring thereby significant learning, with a high degree of satisfaction.This work was funded by National Funds through FCT - Foundation for Science and Technology under the Project UID/AGR/00115/2013.Alves-Pereira, I.; Capela-Pires, J.; Candeias, M.; Ferreira, R. (2020). Functional and conservation value of fruits - a lab approach. En 6th International Conference on Higher Education Advances (HEAd'20). Editorial Universitat Politècnica de València. (30-05-2020):427-435. https://doi.org/10.4995/HEAd20.2020.11082OCS42743530-05-202

    A non-perturbative determination of Z_V and b_V for O(a) improved quenched and unquenched Wilson fermions

    Get PDF
    By considering the local vector current between nucleon states and imposing charge conservation we determine, for O(a)O(a) improved Wilson fermions, its renormalisation constant and quark mass improvement coefficient. The computation is performed for both quenched and two flavour unquenched fermions.Comment: 3 pages, 4 figures, Lattice(2002)(improve

    An interpretation of fluctuations in enzyme catalysis rate, spectral diffusion, and radiative component of lifetimes in terms of electric field fluctuations

    Get PDF
    Time-dependent fluctuations in the catalysis rate ({delta}k(t)) observed in single-enzyme experiments were found in a particular study to have an autocorrelation function decaying on the same time scale as that of spectral diffusion {delta}{omega}0(t). To interpret this similarity, the present analysis focuses on a factor in enzyme catalysis, the local electrostatic interaction energy (E) at the active site and its effect on the activation free energy barrier. We consider the slow fluctuations of the electrostatic interaction energy ({delta}E(t)) as a contributor to {delta}k(t) and relate the latter to {delta}{omega}0(t). The resulting relation between {delta}k(t) and {delta}{omega}0(t) is a dynamic analog of the solvatochromism used in interpreting solvent effects on organic reaction rates. The effect of the postulated {delta}E(t) on fluctuations in the radiative component ({delta}{gamma}Formula(t)) of the fluorescence decay of chromophores in proteins also is examined, and a relation between {delta}{gamma}Formula(t) and {delta}{omega}0(t) is obtained. Experimental tests will determine whether the correlation functions for {delta}k(t), {delta}{omega}0(t), and {delta}{gamma}Formula are indeed similar for any enzyme. Measurements of dielectric dispersion, {varepsilon}({omega}), for the enzyme discussed elsewhere will provide further insight into the correlation function for {delta}E(t). They also will determine whether fluctuations in the nonradiative component {gamma}Formula of the lifetime decay has a different origin, fluctuations in distance for example
    corecore